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Gap solitons in a two-channel microresonator structure
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We show that, when two channel waveguides are coupled by a sequence of periodically spaced microresonators,
the group-velocity dispersion is low in the vicinity of the gap associated with the resonant frequency of the
resonators. This low dispersion permits the excitation of a gap soliton with much lower energy than in a
gap of similar width caused by Bragg ref lection. © 2002 Optical Society of America
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We consider nonlinear optical propagation in two
channel waveguides coupled by periodically spaced
microresonators [Fig. 1(a)]; we call such a device a
two-channel, side-coupled, integrated, spaced sequence
of resonators (SCISSOR).1 The nonlinear properties
of a similar structure with only one channel guide
were studied previously,1,2 as were the linear proper-
ties of the two-channel structure.3,4 In a bottom (top)
mode, light traveling in the forward direction in the
bottom (top) channel is coupled via the resonator to
light traveling in the backward direction in the top
(bottom) channel. Two types of gap open in the
dispersion relation: Bragg gaps associated with the
resonator spacing, d, and resonator gaps associated
with r, the radius of the resonators. We show that,
for a Kerr nonlinear SCISSOR structure, the propaga-
tion of optical pulses is well described by a nonlinear
Schrödinger equation (NLSE). The NLSE supports
soliton solutions, and we find that much less energy is
required for exciting a gap soliton in a resonator gap
than in a Bragg gap with the same gap width.
occur at k � 0, p�d. In the vicinity of a Bragg gap the
We begin in the linear regime and denote the elec-
tric f ield in the bottom channel L�r� � S�x, y�l�z�ŷ, in
the top channel U�r� � S�x, y�u�z�ŷ, and in the mi-
croresonator Q�y,R,u� � T � y,R�q�u�ŷ, where S�x, y�
�T � y,R�� is the mode profile associated with the chan-
nel waveguides (resonator waveguides), R is the ra-
dial variable, and u is the angle within the resonator,
measured counterclockwise from the bottom coupling
points [see Fig. 1(b)]. We consider only the largest
Cartesian component of the electric field in the chan-
nel and resonator, and to make the nonlinear term
in the equation more tractable we take it to be the y
component.

Away from the coupling points, the effect of propaga-
tion is the accumulation of phase by means of propaga-
tion constant n � neffv�c, where v is the frequency of
the light and neff is the effective index of refraction as-
0146-9592/02/070536-03$15.00/0
sociated with the waveguide; we ignore any small fre-
quency dependence of neff. Without loss of generality,
we assume that light is traveling forward (backward)
in the bottom (top) channel. At the coupling points we
use the model1
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where a6 � a 6 �da� and 06 � 6du, where da and
du are infinitesimal quantities. A similar expression
is used for the top channel coupling point. To con-
serve energy, the coupling coeff icients, sb, st, kb, and
kt, satisfy jsij
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2 � 1 and si
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�, where

i � b, t. Combining the effects of phase accumulation
with those of coupling [Eq. (1)], we determine an ex-
pression that relates l�d� and u�d� to l�0� and u�0�.

Searching for the Bloch solution, we write l�d� �
exp�ikd�l�0� and u�d� � exp�ikd�u�0�, where k is the
Bloch wave number. Tracing the fields through the
system, we find that
∑
exp�ind� �bbbt 2 a2� 2 bt exp�ikd� a

2a exp�2ind� 2 bt exp�ikd�

∏ ∑
l�0�
u�0�

∏
� 0 , (2)
where a � igkbkt exp�ipnr�, bi � �si 1 igsiki 3

exp�2ipnr��, and g � i�1 2 sbst exp�2ipnr��21.
Equation (2) has nontrivial solutions only when the
determinant of the matrix vanishes, from which we
find an expression for the wave number, k�v�, that we
can invert to determine the dispersion relation, v�k�.

We define the Bragg frequency, vb�c � p��neffd�,
and the resonator frequency, vr�c � 1��neffr�.
In Fig. 2 we plot the dispersion relation in the
reduced band picture for a symmetric, two-channel
SCISSOR structure with neff � 3.47, sb � st � 0.98,
2pr � 26 mm, and d � 16 mm. There are two types of
gap: the 72nd-order Bragg gap at v�c � 4.075 mm21

and the 59th-order resonator gap at v�c � 4.11 mm21.
The upper and lower edges of the photonic bandgap
occur at k � 0, whereas for the resonator gap they
© 2002 Optical Society of America
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Fig. 1. (a) Schematic of the two-channel SCISSOR.
(b) One unit cell of the structure. Filled circles, coupling
points at the top and the bottom of the microresonator.

curvature of the dispersion relation is high, whereas
near a resonator gap the bands are almost completely
f lat.

We now derive the NLSE that is relevant to the
two-channel SCISSOR structure. We require the
Bloch functions, Emk�r�, of the electric field,5 where
m is the index of the band. We can determine these
functions by using the eigenvectors of Eq. (2) to find
the electric f ield everywhere within one unit cell and
then normalizing the field according to

Z dr
Vcell

n2�r�Emk
��r� ? Em0k0�r� � dmn0dkk0 , (3)

where Vcell is a normalization volume associated with
one unit cell of the periodic medium. We assume that
light is propagating in either a bottom or a top mode
but not in both. We label the carrier wave number
of the light k, which corresponds to a frequency v �
v�k�, and introduce a field, gmk�z, t�, that is related to
the energy in the electromagnetic f ield to lowest order
through

e �
Z

jgmk�z, t�j2dz . (4)

The NLSE is
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where vmk
0 � ≠v�≠kck is the group velocity at the

carrier wave number and vmk
00 � ≠2v�≠k2ck is the

group-velocity dispersion. The nonlinear coefficient
is given by

Gmk �
3v

4Aeff e0
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x�3��r� jEmk�r�j4, (6)

where x �3� �r� is the nonlinear susceptibility of the
medium and is assumed to have the same periodicity
as the device and Aeff is an effective area associated
with the cross section of the channel waveguides.
The region of validity of Eq. (5) has been extensively
discussed.5,6

When the carrier frequency of the field is at an up-
per band edge, the NLSE [Eq. (5)] supports gap soliton
solutions.7 We set m � u to represent the upper band.
The solitons have the form7

guk�z, t� � A exp�iB2z�exp�2i�d 1 D�t�sech�B1z 2 Ct� ,

(7)

with A � �22d�Guk�1�2, B1 � �22d�vuk
00�1�2,

B2 � �12D�vuk
00�1�2, and C � vuk

00B1B2, where
vuk

00 is the group-velocity dispersion at the upper
band edge and where the signs of the detunings d and
D are chosen such that these coefficients come out to be
real; d determines the height and the spatial width of
the soliton, whereas D determines the velocity. The
center frequency of the soliton is vc � vuk 1 d 1 D,
and the frequency width of the pulse is denoted C.
For most of the frequencies of the pulse to be contained
within the gap we require that vc 1 2C # vuk. It
is easy to confirm that this condition can be met for
an arbitrary value of C if we set D � C��2M� and
d � 2C�M�2�, where M $ 4. However, the pulse
width is limited by the fact that NLSE (5) is valid
only for frequencies slightly inside the gap. If we fix
M � 4 then we should have C�dv��20, where dv is
the width of the gap. We have verif ied that a pulse
of this width and central frequency is well described
by the NLSE.

Using the form of guk [Eq. (7)] in the ex-
pression for the energy [Eq. (4)], we find that
euk

soliton � �2
p
2jdj�Guk�

p
vuk

00. Because the group-
velocity dispersion near a resonator gap is so much
smaller than near a Bragg gap, the energy required for
exciting a gap soliton with the same pulse width �C�,
and the same depth within the gap �d 1 D�, is much
lower in a resonator gap; furthermore, the resonator
soliton will travel with a slower group velocity and will

Fig. 2. Dispersion relation for the two-channel SCIS-
SOR with material parameters given in the text. The
gap at v�c � 4.11 mm21 is associated with the 59th-
order resonance of the microresonator. The gap at
v�c � 4.075 mm21 is associated with Bragg ref lection.
These gaps are at typical communications wavelengths, as
indicated by the right-hand axis.
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Fig. 3. Ssol is the ratio of the energy required for forming
a gap soliton in a resonator gap to the energy required for
forming the same gap soliton in a Bragg gap with the same
gap width relative to its center frequency.

consequently have a smaller spatial width. We define
a quantity Ssol�dv� � emk

solitoncres�emk
solitoncBragg,

where emk
solitoncres�Bragg� is the energy required for

exciting a gap soliton in a resonator (Bragg) gap;
Ssol is a measure of how much easier it is to form a
gap soliton in a resonator gap than in a Bragg gap.
To make this comparison we consider one system
in which vuk corresponds to the upper band edge
of a resonator gap and another in which the same
frequency vuk corresponds to the upper band edge of
a Bragg gap. The overlap integrals that we use to
determine the nonlinear coeff icient, Gmk, are roughly
equal at the gaps, so Ssol � �vres

00�vBragg
00�1�2. We

use physical parameters defined above but vary the
values of s and d to achieve different gap widths and
center frequencies.

In Fig. 3 we plot the value of Ssol as a func-
tion of the gap width �dv�vuk�. For a small gap
width, �dv�vuk� � 1026, Ssol � 1024; for gap width
�dv�vuk� � 1024, which is more realistic, Ssol � 1022.
Of course, material and mode dispersion, both ne-
glected in our calculations, will set a lower bound on
Ssol. The low energy requirements for gap solitons in
a resonator gap are balanced by a much longer soliton
formation length,8 but for switching applications this
restriction is not so important. A pulse with a form
similar to Eq. (7) but with a much lower amplitude
will be unable to propagate, because all its frequencies
lie within the gap. By contrast, if the pulse has the
correct amplitude, it will form into a soliton while it
propagates. If the initial pulse is close to a soliton,
then reshaping should be minimal.

In conclusion, we have investigated optical propaga-
tion in a two-channel SCISSOR structure with a weak
Kerr nonlinearity. We have presented a NLSE that
accurately describes propagation near the band edges
of a resonator gap if the light is propagating in only one
mode of the system. The energy required for form-
ing a gap soliton is much smaller than in a Bragg
gap of similar width. We note, too, that whereas the
one-channel SCISSOR structure investigated by Heeb-
ner et al.1 supports solitons that can travel with a small
group velocity, that velocity can never vanish; further-
more, that structure possesses no gap, so a true gap
soliton could not be launched. We intend to extend the
analysis to coupled gap solitons and to discuss the is-
sues involved in experimentally launching and observ-
ing gap solitons.
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